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 The purpose of this paper is to demonstrate effectiveness and efficiency of 

different fusion techniques in the analysis and characterization of diseases 

pattern in medical images. Local features have been combined with global 

features of images to generate new descriptors or features for efficient 

characterization and classification of biomedical images. Some of the 

important research questions that would be specifically addressed in this paper 

include the following: What are the techniques for feature extractions? 

How can the fractal dimension be applied to detect different patterns in 

medical images? Can the combined features from both local and global 

features provide robust descriptors of shape/textures for the analysis and 

classification of image? Answers to these research questions would be 

illustrated with several experiments. Several methods of feature fusion 

techniques in the analysis of medical images have been suggested and 

evaluated in different ways. This paper proposes to develop new descriptors 

using fusion techniques to address some of the limitations of the existing 

methods in terms of efficiency, speed of image analysis and error corrections. 

Results analysis and some important implementation aspects of the new 

descriptors that could be used to improve the overall classification accuracy 

have been discussed in this paper. The performance measure of different 

models have been investigated using combined features for further 

improvement and analysis in detection and classification of Emphysema 

patterns.  
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Introduction 

 
The research work reported in this paper uses several fundamental concepts in fractal theory. While fractals are 

commonly associated with self-similar objects, in image analysis applications, fractal measures represent certain 

types of irregularities in structures. The most fundamental measure that characterizes the scaling behaviour of a 

fractal structure is the fractal dimension. Several types of fractal dimensions and their computational aspects are 

discussed in this paper. 

The notion of fractals is closely tied to several important geometrical concepts such as self-similarity, symmetry, 

periodicity and scale invariance. Some of the shapes that are commonly used as examples of fractals are the 

Koch curve, the Sierpinski triangle, the dragon curve and the Barnsley fern (Figure 1-1).The structural similarity 

at various levels of detail (or "scales") can be clearly observed in all the above shapes. Indeed, these shapes are 

generated using this very property. Given a shape at the base level, multiple copies are created, transformed and 

positioned according to a well-defined procedure to get the shape at the next level.The iterative process is 

repeated a number of times to get fractal shapes with the required level of complexity. 
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Two such iterative procedures are Linder Mayer system (L-system) and the iterated function system (IFS). The 

first three fractals in Figure 1-1 was generated using L-systems, while the Fern was generated using an IFS. The 

L-system uses a grammar based string production rule that generates a fractal as a string of turtle commands. 

The IFS on the other hand uses a set of affine transformations to repeatedly transform a point. The collection of 

all points thus generated forms a fractal shape. 

There are more complex methods for generating fractals. The Mandelbrot set is defined as the orbit of a point at 

the origin under the iteration of a non-linear map of second degree in the space of complex numbers. When the 

generating point is switched to the constant value of the quadratic map, we get a group of interesting fractal 

shapes called Julia sets. Both the Mandelbrot and the Julia sets are highly intricate and infinitely complex shapes 

(Figure 1-2). 

 

 

 

 

 

 

 

 

 

                               Figure 1-2: The Mandelbrot and the Julia sets 
Inspired by the structural complexity and the aesthetic features of the Mandelbrot and Julia sets, several other 

popular fractal shapes were also developed using both complex and hyper-complex systems. These developments 

also saw the evolution of new areas such as fractal art side by side the development of fractal theory in 

mathematics and physics. 

All fractals highlighted so far in this section fall into the general category of deterministic fractals. Another 

important class of fractals is based on stochastic rules or the inclusion of random variations in the iterative systems 

described above. A classic example of a one-dimensional random fractal is the Brownian motion obtained by 

integrating Gaussian white noise. Random fractals can be used to create models of several real-world objects and 

natural phenomena in computer by using graphics. Models of trees, terrains and clouds can be generated using 

random fractal processes, where the non-uniform appearance is created with the addition of random perturbations. 

A very well-known technique for generating random fractals is the mid-point displacement method. This method 

also finds applications in the diamond-square algorithm used for terrain programming.  

Euclidean Dimension and Topological Dimension 

One of the most commonly used dimensions is the Euclidean dimension DE that considers the space occupied 

by an object. In this measurement, a structure is called one-dimensional if it is embedded on a straight line, two- 

dimensional if it is embedded on a plane and three-dimensional if it is embedded in space. A point has dimension 

0. The topological dimension DT of an object corresponds to the number of independent variables (or parameters) 

needed to describe it. Thus, a point is 0-dimensional, a curve is 1-dimensional, and spherical surfaces and planes 

have a topological dimension 2. The Euclidean and topological dimensions both assume only integer values. 

 

Hausdoff Dimension 

The notion of a fractal dimension is entirely based on the theory of Hausdoff dimension (also known as Hausdorff-

Besicovitch dimension). Consider a curve C on a two-dimensional plane, which is covered using a set of discs Dj 

or radius rj (j = 1..n) as shown in Figure 2-1. We impose the condition that rj≤𝛿 for some 𝛿> 0, for all j. Such a set 

of discs is called a 𝛿- cover of C.   

 

  

The Mandelbrot set A zoomed-in segment The Julia set 



122        
Ibrahim, M. A. & Oladotun O. 
 

 

 

 

Figure 2:  A 𝜹 -cover of a curve C, and a depiction of the Hausdorff dimension 

The Hausdorff measure Hα(C) on the curve C is defined in terms of its 𝛿- cover and a parameter (exponent) α 

as 

𝐻𝑎(𝐶) =
𝑙𝑖𝑚

𝛿→0
{𝑖𝑛𝑓 ⌈𝜀𝑖𝑟

𝑎

𝑗
⌉}                                               (2-1)                                

 

The Hausdorff measure has the property that there exists a critical value α0 

such that: 

Hα(C ) = ∞, if  α<α0 

Hα(C ) = 0, if  α>α0                          (2-2) 

 

The value of  𝜶𝟎 is called the Hausdorff dimension of the curve C.   

       

Methods for Computing Fractal Dimension 

 

Fractal dimension plays a central role in the theory of fractals and also in almost all applications involving fractals. 

Fractal dimension has the ability to characterize the irregularity of shapes, which other dimensions such as the 

topological dimension may not be able to represent. The fractal dimension is used to estimate the size and 

roughness of fractal sets; it is a number associated with a fractal that tells how densely the fractal occupies the 

underlying space. 

The computational methods used for the estimation of fractal dimension in this paper are the box counting and 

the Higuchi methods. These and related methods are outlined in the following sections. 

 

2.4  Box counting Dimension 

Box counting is the most widely used fractal dimension in computing applications. It became a highly popular 

technique because it can be very easily implemented. Box dimension is also sometimes referred to as the capacity 

dimension. The definition is based on the concepts relating to 𝛿-cover presented in this section. For computing 

the box dimension, we subdivide a rectangular region containing a fractal curve into sub-regions (or "boxes") of 

size 𝛿.   

 

 

 

𝛼 0 

∞ C 

𝛿 

𝛿 
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 Figure 2-2: The regular subdivision and the linear regression used in box-counting algorithm. 

If we denote the number of boxes of size 𝛿 that intersect a fractal curve C   by 𝑛𝛿(C), then the box-counting 

dimension of C is given by 

 

 

 

𝐷 =  
𝑙𝑖𝑚

𝛿→0
⌈
𝑙𝑜𝑔2𝑛𝛿(𝐶)

−𝑙𝑜𝑔2𝛿
⌉ 

 

 

The above method is usually implemented by iteratively halving the box size in each step, and counting the 

number of boxes that contain at least one point of the fractal. If N denotes the image size in each direction, the 

fractal dimension D is estimated as the slope of a linear regression line through the points on a log-log plot with 

log2(N/𝛿) along the x-axis and log2(n𝛿(C)) along the y-axis (Figure 2-2). The values obtained for a Sierpinski 

triangle with image size N = 256 are shown in Table 2-1. 

 

Table 2-1: Values generated by the box-counting algorithm for Sierpinski triangle. 

 

𝛿     n𝛿 (C) log2(N/𝛿) log2 n𝛿 (C) 

128 4 1 2 

64 12 2 3.58496 

32 36 3 5.16993 

16 108 4 6.75489 

8 324 5 8.33985 

4 979 6 9.93517 

2 2952 7 11.5275 

2.4.1   Higuchi Dimension 

The Higuchi’s method is another efficient way of calculating the fractal dimension of a curve that has found 

several applications in the analysis of time series (Higuchi, 1988). Higuchi’s method is particularly suitable for a 

one-dimensional signal whose values at regular discrete intervals are available in the form x(i), i = 1, 2, ...N. 

Several new data point series are constructed using an interval length , and starting value index t: 

 

𝑆𝑡(𝜑) = {𝑥(𝑡), 𝑥(𝑡 + 𝜑), 𝑥(𝑡 + 2𝜑), … … . . 𝑥(𝑡 + 𝑝𝜑)}             (2 − 4) 

Where 

                                    𝑝 = [
𝑡−1

𝜑
]     (2-5)    

The length of the series in (1-4) is calculated as a normalized sum of differences: 

 

                        𝑙𝑟(𝜑) =  
𝑁−1

𝑃𝜑2
∑ 𝐼 𝑥(𝑡 + 𝑖𝜑) −  𝑥(𝑡 + (𝑖 − 1)𝜑)

𝑝
𝑖1     (2-6) 

 

The mean length for each interval length is obtained as 

𝐿(𝜑) =
1

𝜑
∑ 𝐿𝑘(𝜑)

1

𝜑

                                                         (2 − 7) 

As in the case of the box-counting dimension, the Higuchi dimension DH is also computed as the slope of a linear 

regression line obtained using a log-log plot with log(φ) along the x-axis, and log (L(φ)) along the y-axis.   
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An NxN image I(i, j) must be converted to one-dimensional data before the above method can be applied. A 

common approach used for this is to add the values along each column to get a one-dimensional array of sums of 

pixel intensities: 

 

 

 

  𝑥(𝑖) = ∑ 𝐼(𝑖, 𝑗), 𝑗 = 1,2, … 𝑁.𝑁
𝑗=1                        (2-8)         

 

 

Generalized Renyi Dimension 

The box-counting dimension outlined above can be extended to a generalized family of dimensions called Renyi 

dimensions. These dimensions use a probability measure functionµ. In the context of the box- counting algorithm, 

µi represents the probability of finding a point of the fractal within a box with index i. The Renyi dimensions Dq 

are defined with respect to a non-negative parameter q as 

𝐷𝑞   =  
1

𝑞−1  𝛿→0
𝑙𝑖𝑚

𝑙𝑜𝑔2[∑ 𝜇𝑖
𝑞𝑁

𝑖=1 ]

𝑙𝑜𝑔2𝛿
      (2-9) 

 

As a special case  of the above, when q becomes 0, we get the box counting  dimension. In a fractal system the 

measured object is assumed to have  an internal structure with different spatial scales; the number  N(e) of features 

of certain size e scale as (Posadas, 2003 & Martinez, 1999):  

 

𝑁(𝑒)~𝑒𝐹               (2-10) 

 

Where F is the fractal dimension, which describes the scaling properties or the size distribution of 2D objects. 

The box counting  method is used to obtain the scaling properties of the object by covering the measured object 

with boxes of size S and counting the number of boxes containing at least one pixel representing the object under 

study, N(S): 

 

               F0 = lim
𝑠→0

log 𝑁(𝑠)

log(
1

𝑠
)

                                                                     (2-11) 

 

The box counting dimension 𝐹0 can be determined as the slope of the linear regression of log N(S) versus log 

(1/s) measured over a range of box sizes. The multi-fractal measure can be characterized through the scaling of 

the kth moments of Pi distribution in the form  (Chhabra, 1989; Martinez, 1999 & Oiwa, 1998): 

 

                             Σ
N
i=

(
1
S) 

Pi
k (S) =  S(k–1)Fk            (2-12) 

 

where Fk is the generalized fractal dimension defined from Eq. (1-13) as: 

 

Fk = lim
𝑠→0

1

𝑘−1

log ∑ 𝑝𝑖
𝑘(𝑠)

𝑁(𝑠)
𝑖=1

log 𝑠
        (2.13) 

 

 The exponent in Eq. (2-12) is known as the mass exponent  of the kth order moment ּך(q) (Martinez, 1999 

&Miranda, 2006): 
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(k) = (k-1)Fk                 (2-14) 

As can be seen in Eq. (2-13), when  k =0, all the boxes have a weight unity (Appleby, 1996 &  Mendoza, 2010), 

the numerator becomes N(S) and the Fk  becomes the capacity dimension, F0 (Eq. (2-11). The other two special 

cases are when k = 1 and k =2 which are known as the information dimension F1 and correlation dimension F2 

respectively. For k = 1, it can be derived from Eq. (2-13) as: 

 

 

                               F1 = lim
             𝑠→0

log ∑ 𝑝𝑖 log 𝑝𝑖
𝑁(𝑠)
𝑖=1

log 𝑠
 

 

F1 is directly related to the information or Shannon entropy (Thomazini, 2008    &Oudjemia, 2013), which 

quantifies the degree of disorder present in a distribution. For k = 2 the correlation dimension F2 can be obtained 

as: 

 

                               F2 = lim
 𝑠→0

log ∑ 𝑝𝑖2𝑁(𝑠)
𝑖=1

log 𝑠
 

F2 is mathematically associated with the correlation function and computes the correlation of measures contained 

in intervals of size S. The fractal dimension of higher moments can be estimated according to Eq. (2-13). The 

Renyi spectrum is generated  by the graphs of Fk versus k and it represents the mass distribution of an image. Fk 

addresses how mass varies with the e (resolution or box size) in an image. On the other hand, the plot of Fk for 

different values of k is called the generalized dimensional F2≤F1≤F0,  where the equality F0=F1=F2 occurs only 

when the fractal is statistically or exactly self-similar and homogenous (stosic, 2006 & Zaia, 2006).  According 

to [2-10], the singularity spectrum can be calculated using a set of real numbers k with the following equation: 

 

                             α(k) = lim
                                                               𝑠→0

log ∑ µ𝑖 log [𝑝𝑖(𝑠)]
𝑁(𝑠)
𝑖=1

log 𝑠
                                                        (2-17) 

 

 

and the direct computation of 𝑓(𝛼𝑘) value is : 

                             f(αk) = lim
                                                                   𝑠→0

log ∑ µ𝑖(𝑘,𝑠) log [µ𝑖(𝑘,𝑠)]
𝑁(𝑠)
𝑖=1

log 𝑠
                                               (2-18) 

 

 

Where the quantities  µ𝑖(𝑘, 𝑠) are defined as 

 

 

µ𝑖(𝑘, 𝑠) =
𝑝𝑖

𝑘(𝑠)

∑ 𝑝𝑖
𝑘(𝑠)

𝑁(𝑠)
𝑖=1

       (2-19) 

𝑝𝑖(𝑆) is the fraction or probability of the object contained in each ith box of size S. 

 

Applications and Algorithms 

In Section 1.2.3 above, we presented the Higuchi's method for computing the fractal dimension of an image. This 

method has become very popular due to its simplicity and speed of computation. The decomposition of a two-

dimensional image into one-dimensional signals greatly helps in reducing the complexity of the algorithm. Two 
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fundamental fractal shapes were used, the Sierpinski triangle and the Sierpinski carpet (Figure 2-3) for our 

analysis of Higuchi's method. 

 

 

 

Figure 2-3: Images of the Sierpinski triangle and Sierpinski carpet used for the computation of Higuchi’s 

dimension 

 

The slopes of the linear regression of the log-log plots in Figure 2-4 gives the estimated fractal dimension of the 

Sierpinski carpet using the box counting method and the Higuchi's method. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4: Double logarithm plots generated using the box counting method and Higuchi's method for the 

Sierpinski carpet image. 

As can be seen in Table 2-2, the estimated fractal dimension using Higuchi's method results deviates more from 

the theoretical FD with a p- value of 0.7995 compared to the box counting method with a p-value of 0.1857. This 

difference is attributed to the horizontal and vertical projections of image values used in the Higuchi's method. 

However, the two algorithms seem to perform well in general, and can be used for efficient computation of digital 

images since the estimated FD values are sufficiently close to the theoretical values. 

 

 

 

 

 

 

 

 

Table 2-2: Estimation of fractal dimensions of fractal images 

 

2.4  Parameter Selection for Higuchi’s Algorithm 

In Higuchi’s algorithm, selection of kmax is very important in the estimation of fractal dimension as this parameter 

determines the performance of the algorithm. Few studies in the past have attempted to address the issue of kmax 

selection: the authors in (Accardo, Affinito, Carrozzi, & Bouquet, 1997) selected kmax = 6 as the optimum value. 

Other studies have suggested that the selection of the kmax range should probably be subjected to further 

consideration if a large N is to be used, that is, the authors suggested increasing kmax for increasing N. In another 

study (Paramanathan & Uthayakumar, 2008), the authors provided an algorithmic estimation of kmax, inspired by 

a divider method for FD estimation. In their approach, kmax of Higuchi’s method was re-calculated for every FD 

estimation. 

In our study, a wide range of kmax values was considered in the range 17-25. The image size N=5l2 was used. 

Using each of those values, the FDs using Higuchi’s algorithm were calculated for different Weierstrass 

sequences. In order to generate Weierstrass sequences; a deterministic Weierstrass cosine function (Tricot, 1995), 

sampled at N equidistant points was used: 

 

 Box counting Higuchi 's Method Theoretical FD 

Sierpinski Carpet 1.9013 1.9283 1.8928 

Sierpinski Triangle 1.5673 1.6519 1.5850 
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𝑊𝐻(𝑥)= 𝜆𝑖𝐻 cos(2Ԥ𝜆𝑖𝑥) < 𝐻 < 1                                                                                  (2-20) 

Where t> l and, following (Esteller et al., 2001), and x ‹ [0, l], N =5l2 was used. The above defined 

function is Weierstrass’s example of a continuous function that is nowhere differentiable and has a 

known theoretical FD. More specifically, parameter H is connected to the theoretical FD (FDth) of the 

Weierstrass function by FDth = 2-H. Using (2-20), Weierstrass sequences, each having a different theoretical 

FD value (i.e. l.l,l.2,l.3,...,l.9), were generated. In order to evaluate the performance of the algorithm for 

different kmax values, a mean square error (MSE) was estimated according to (2-21). 

MSE=
1

𝑛
∑ 𝐹𝐷𝑡ℎ(𝑖) − 𝐹𝐷𝑒(𝑖))2𝑛

𝑖=1                                                                                    (2-21) 

Where FDth is the theoretical FD value for the images, FDe is the estimated fractal dimension and n is the number 

of weierstrass sequences (of different theoretical FD values) used for the MSE estimation. Figure 2-5 shows the 

MSE against kmax (Higuchi steps); it reflects the performance of the algorithm with respect to k-values. As can be 

seen in the figure, when k ranges from 17 to 25, the MSE value is almost zero and this means the expected fractal 

dimension and the estimated fractal dimension at these points are almost the same. These values of kmax were 

considered in FD estimation using Higuchi’s algorithm when applied to fractal images. 

 

 

Figure 2-5: MSE for Higuchi’s FD estimations for increasing KMAX values 

 

The values of k less than 7 led to a poor performance, which resulted in very High MSE values. However, as the 

value of k increases from 7, the value of MSE decreases. 

 

Holder Exponent Computation 

 

Using the values of the intensity measures µP(r) described in the previous section, we can explore how they scale 

with r and establish the power laws satisfied by them. 

µP (r) = C r αp ,   α> 0. (3-1) 

where C is a constant of proportionality and αP represents the Holder exponent for the power law of the measure 

under consideration at the point P. 

As in the case of fractal dimension, the value of αP is calculated as the slope  of the linear regression line of the 

log-log plot where log(r) is plotted on the x-axis and log(µ) along y-axis. The linear regression lines and the 

corresponding values of αP for the graphs are presented in Figure 3-1.  
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Figure 3-1: Graphs showing the computation of linear regression lines from log-log plots of measure values 

 

Since for every P, we get a value αP of the Holder exponent for the chosen measure, we can form a rectangular 

array of values αP having the same size as the original image. This two-dimensional array is called the α-image. 

 

3.5 Multi-fractal Spectrum of Tissue Images 

As mentioned in the previous section, the subdivision of the α range of an input image gives a decomposition of 

the image in terms of a set of α- slices. If we compute the fractal dimension of each of the α-slices, we get another 

powerful feature descriptor called the multi-fractal spectrum. The multi-fractal spectrum gives the variation of 

the fractal dimension with the Holder exponent α for a given intensity measure. It has been used as robust feature 

descriptors in image analysis applications including tissue image classification (Mukundan & Hemsley, 2010).  

An example of a tissue image and a multi-fractal spectrum computed from the image are shown in Figure 3-2. 

 

 

                           Figure 3-2: A tissue image and its multi-fractal spectrum 

 

 

This spectrum was generated by subdividing the range of α values into 100 subintervals, with each of the 100 α-

slices generating one fractal dimension. Fractal dimensions with magnitude less than 0.4 are generally 

considered insignificant and not used as part of any feature vector. Similarly, values of αmin and αmax are also 

chosen to eliminate the points at both ends of the fractal spectrum where high frequency oscillations are usually 

found. 

The multi-fractal spectra computed for the tissue image in Figure 3-2 corresponding to the four intensity measures 

presented earlier in this section, are given below in Figure 3-3.                              

 

 

 
 

Figure 3-3: The multi-fractal spectra corresponding to four different intensity measures, computed for the 

input image in Figure 3-2. 

 

Conclusions  

Medical image analysis algorithms for automatic segmentation, extraction of regions of interest and classification 

based on features present in image have found useful applications as diagnostic tools in pathological assessments. 

This paper has presented several novel methods for emphysema classification and analysis of regions of interest 

using multi- fractal descriptors. The algorithms presented in this paper rely on several concepts from the theory 

of fractals. This paper has outlined some of the important properties of fractals such as self-similarity and 
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measures associated with them. The most widely used measure is the fractal dimension. This paper has discussed 

the essential concepts behind Hausdorff measures, box- counting dimension, Higuchi dimension and the 

generalized Renyi dimensions. The Renyi dimensions bear a close relationship with the multi- fractal spectrum 

of the measure µ. The next section gives an overview of concepts related to multi-fractal measures and the multi-

fractal spectrum. Section 1 provided the theoretical foundations of fractals that are important in image processing 

applications, and discussed the mathematical aspects of different forms of fractal dimensions. Section 2 described 

some related features that could be used to reveal the intensity distributions of any natural image using fractal and 

multi-fractal properties. Some of the approaches outlined in this paper were implemented and applied for solving 

different problems in pattern analysis and classification. Section 3 introduced four key multi-fractal measures 

used in this paper, and described the computation of important multi-fractal features such as the alpha histogram, 

multi-fractal spectrum and Higuchi’s dimension. Gaps in  

 

existing research work such as the application of Higuchi dimension in medical image analysis have been 

identified and later used in this paper to develop new algorithms. Results showing inter-class variance and intra-

class similarities in multi- fractal features demonstrated the effectiveness and discriminating power of the features 

in the analysis and classification of the lung CT images. This paper also presented different novel algorithms for 

the analysis of emphysema patterns using the Renyi spectrum features. In image classification problems involving 

large number of features, it is important to incorporate feature selection methods to improve the classification 

accuracy. Features such as the multi-fractal spectra, Renyi spectra and alpha-histograms can all contain large 

numbers of values. Overall, this research work has provided a significant number of contributions in the field of 

fractal and multi-fractal analysis of medical images, specifically for emphysema pattern classification. 
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